力循环装置将裂变和聚变的热能转化为电能,然后再进行使用。
而这其中,设计到一些物理定律。
比如最常见的热力学第二定律,就告诉了所有人,以人类的技术,不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。
但偏偏,无论是可控核裂变也好,还是可控核聚变也好,的都是一个超高温的单一热源。
而要利用这种超高温的单一热源,就必然伴随着能量的损失。
很遗憾的是,哪怕到了二十一世纪,人类在热能发电方面并没有掀起什么波澜。
也没有探究到具有超高转化率和利用率的方式来直接使用热能。
最常使用的热电转换,依旧还是热机。
也就是指各种利用内能做功的机械,比如蒸汽轮机和内燃机。
但热机进行热电转换,是有极限的,热量的损耗也很大。
普通的火电站,热电效率能达百分之四十到五十左右。
这差不多是人类目前对单一热源转换的极限了。
各国研发的可控核裂变发电,使用的发电装置,也都是建立在‘卡诺循环’热机发电的基础上的。
所以对于超高温的核裂变发电,高温使用效率并不高,很大一部分热量都浪费掉了。
而这,也是后面可控核聚变会遭遇到的一个问题,是建立在卡诺循环理论基础上的发电装置必然会遭遇到的一个问题。
当然,针对这个问题,相关的科学家肯定有对应的研究和理论。
但依旧很遗憾的是,目前并没有找到什么太好的热电转换方式。
无论是温差发电,还是热离子堆发电,其热电转换效率低的可怕。
比如听起来很高科技,也应用于米国、老毛子核动力潜水艇上的热离子堆发电,其效率只有百分之五左右。
相对于热机来说,简直低的可怕。
对于目前的人类来说,不可否认的是,烧开水,依旧是最高效的方式。
如果能找到比烧开水更高效的方式,单单是可控核裂变的发电效率就能提升一大阶。
虽然对于正在大量铺设镧化镓硅太阳能薄膜发电场的华国来说,核电站已经不是那么重要了。
但不代表其他国家也有这样的能力。
特别是某些国土面积小,但经济发达的国家,除了从其他国家购电外,核电站依旧是一种非常好的发电方式。
甚至就是华国,如果能提升热电转换效率,核电站也并不一定会被抛弃。
毕竟光伏电场并不是所有地方都可以建立的,它不仅需要占据大量国土面积,而且对于环境也有着严苛的要求。
除此之外,超远距离输电、光伏电场产生的光污染等等,都是很麻烦的事情。
如果热电转换效率提升,核电站依旧是一种较为优秀的发电方式。
就像如今的华国,在得到神农架基地,从中间获取到不少的科技资料后,原本计划停机的各大核电站,不仅没有停机,反而有计划开设新核电站的安排。
因为神农架基地中有两种关键技术能解决核电站带来的麻烦。
一种是能吸收放射性元素的白雾。
经过一年多时间的研究,中科院已经算是吃透了这种材料,并且初步做到了能对其进行生产研发。
而这种白雾,可以用于处理核电站发电产生的核废料。
另外一种技术则是这种‘放射性同位素热电偶发电机’了。
它可以使用核裂变以及核聚变发电时产生的超高温,在热电转换效率方面,能达到百分之八十左右。
远超烧开水以及温差发电及热离子堆发电。
这种技术,使得核电站发电的成本以及效率大大提升。
再加上原