力物力成本,提升了生产效率。
当然,3D打印技术目前还是一种新型新兴技术,优点和缺点很分明。
韩元要做的,就是尽力将其缺点补足。
工作室间,韩元手拾铅笔在白纸上编写着3D打印技术需要使用的材料。
对于他来说,这种材料必须要有足够的强度、韧性、抗性、耐腐蚀性等优秀性能。
因为这是用于制造工业机器人身上的。
复合碳纤维材料、钴铬合金、亚克力材料、钛合金、树脂
一系列相对符合3D打印技术使用的材料都被韩元列举在了纸张上。
编写完成后,韩元放下了手中的铅笔,拾起了纸张。
通过3D打印技术制造工业机器人,需要的材料肯定不止一种。
从主体骨骼到电源供应,再到无线通讯到智能控制
一台智能工业机器人身上的零件都可以说是不计其数的,而且每个区域的功能都不同,这需要完全不同的材料来制造。
不过韩元想要的,只是其中的一种关键性材料。
那就是可以用于关节处的3D打印材料。
如果抛开软件程序和控制系统这些编程方面的东西来说,一台机器人的水平能力如何,几乎可以说有二分之一以上的性能取决于关节活动处。
没错,
一台机器人的关节处就是这么重要。
关节处的活动自由度以及冗余自由度决定机器人的灵活性、自由度、运动精度、运动特性、动态特性等等性能。
人的手臂(大臂、小臂、手腕)之所以足够灵活,是因为一共有七个灵活度,足以支撑人类完成绝大部分的工作了。
而且相对于其他部位的材料零件来说,机器人活动关节处的零部件承受的压力更大,对于使用材料的性能要求更高。
如果说一台机器人绝大部分的材料都可以使用高强度高韧性的复合碳纤维材料构成,那么关节处的材料是无法使用碳纤维材料的。
因为3D打印技术打印出来的碳纤维材料表面相当粗糙,而关节处的材料要求表面光滑达到一定程度,碳纤维材料达不到要求。
至于各种合金材料,光滑度经过处理虽然能达到要求,但采用3D打印技术处理的话,这两种材料的强度和抗疲劳性能是达不到要求的。
毕竟和传统的冶炼技术相比,3D打印技术打印出来的合金在强度、韧性等方面都弱了不止一个档次。
所以研发出一种可以用于3D打印的机器人关节处材料就是韩元这一次的目的。
相对于普通冶炼过程使用的材料来说,3D打印技术使用的材料要求更高。
就像粉末冶金,基本都可以使用一毫米以下的粉末来进行。
当然,也有一些超细颗粒的粉末冶金技术要求粉末颗粒的直径一百微米左右或者一百微米以下。
不过这是相对特殊的情况,总体来说使用的粉末颗粒直径还是比较大的。
但3D打印金属材料使用的粉末颗粒直径的基本要求均在一百微米以下,严格的甚至要求达到三十微米左右。
除了金属粉末的颗粒直径外,3D打印技术对于金属粉末的纯净度高、球形度、粒径分布宽窄、氧含量高低等条件都有一定的条件。
这些条件对比起常规的粉末冶金技术更加苛刻。
盯着纸张上列出来的各种材料,韩元陷入了沉思。
大脑中的各种材料属性知识一项项的被调用起来查看推衍,寻找着适合3D打印的材料。
半响过后,韩元从沉思中醒过来,再次在纸张上写下了另外两种种材料的名字。
非晶合金材料共晶合金材料