叫基础数学,是专门研究数学本身,不以实际应用为目的的数学分类。
它研究从客观世界中抽象出来的数学规律的内在联系,也可以说是研究数学本身的规律。
相对于应用数学而言,和其它一些不以应用为目的的理论科学,例如理论物理、理论化学有密切的关系。
一般来说,纯数学以几何、代数、分析这三类为主,而这三类,也是韩元最近半年主学的分类。
主要还是时间太短了,即便是有学些勋章,也无法笼统的学习。
所以对于韩元来说,纯数学的问题是最有希望解决的。
毕竟这大半年的时间他只学习了数学,以及部分基础物理知识。
像杨米尔斯规范场存在性和质量间隔假设这种掺杂了尖端物理的难题,他都不配看一眼。
这种问题,别说解决了,门都摸不到。
翻了翻纯数学中的一些猜想,韩元将目光放到了希尔伯特二十三问上。
希尔伯特是二十世纪的一个伟大数学家,在1900年的时候,他在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究。
这23个问题总和起来就叫做‘希尔伯特二十三问’,其中有一部分被解决了,还有一部分直到二十一世纪的今天都仍然没有被解决。
在十九世纪七十年代的时候,米国数学家评选的自19401976年以来米国数学的十大成就中,有三项就来自希尔伯特二十三问中的三个问题的解决。
从这可见希尔伯特二十三问的难度。
韩元将目光放到这个上,并不是说现在就要去解决其中未解决的问题,而是借助它来验证自己的数学水平。
尽管希尔伯特二十三问本就是他预留给自己解决数学基础任务,也不代表他这两三天的时间就能解决掉。
关键的是,希尔伯特二十三问韩元没有看,这本就是他预先留给自己论证数学知识的。
他可以根据希尔伯特二十三问的难易度来进行处理,看看自己的数学水平到底在那一层次。
当然,要说完全没看那是不可能的,在学习的过程中总有一些涉及到。
不过这并不影响他可以根据这一系列的问题来判断自己的数学水平。
除此之外,还有一个点在于希尔伯特二十三问中有一半左右的问题是已经被解决了的,有答案,可以验证。
这避免了解开一个数学难题后,没有人可以验证。
而剩下的一半,在二十一世纪的今天也有不少问题都有重大性的突破,有些甚至可以说只差临门一脚。
这给了韩元作弊的方法。
相对于七大千禧年难题这种几乎粘在地上拿脚踹都踹不动的问题来说,希尔伯特二十三问中的未解决问题更容易解决掉。
坐在桌前,韩元摸出来一叠纸张,开始由易到难一个一个的解决论证。
希尔伯特二十三问中的问题有难有易,有些难的能排到第一阶梯和第二阶梯的数学难题里面去。
比如第一问、第五问、第十问,这三项问题的解决都让解决者拿到了一枚菲尔兹奖。
除此之外,希尔伯特二十三问大部分都可以说是纯数学问题。
希尔伯特问题中的16问是数学基础问题,712问是数论问题,1318问属于代数和几何问题,1923问属于数学分析。
即便是有少部分夹杂着物理、计算机等学科的知识也不算多么高深,非常适合现阶段的他。
希尔伯特问题中,比较简单的问题都解决的比较早,比如第十七问:
一个实系数n元多项式对一切数组(x1,x2,...,xn)都恒大于或等于0,那