么这个实系数是否都能写成平方和的形式?
这个问题在1927年的时候由日耳曼过的数学家埃米尔·阿廷解决,并提出了封闭域、
举个很简单的例子,例如对于最常见的公式:ab≥2√ab可以转化为(√a√b)≥0。
这个转换就是对希尔伯特十七问的应用。
相对比其他的问题来说,十七问应该是比较简单的一个了。
最难的,应该是第八问的素数问题了。
希尔伯特第八问的素数问题并不是一个,而是三个,分别是黎曼猜想、哥德巴赫猜想及孪生素数问题。
这三个问题的难度就不用多说了。
黎曼猜想被誉为七大千禧年难题中最难的一个,至今无人能证明,甚至连推动它前进一步都做不到。
至于哥德巴赫猜想和孪生素数猜想这两个问题。
前者已经被陈景潤老爷子推到了12的地步,后者则被另一位话国数学家张益唐教授证明了孪生素数猜想的一个弱化形式,发现孪生素数存在无穷多差小于7000万的素数对。
而通过这个弱化形式的定理,孪生素数猜想这个此前没有数学家能实质推动的著名问题,迈出了革命性的一大步,至今这一差值已被缩小至246。
虽然后两者都还没有被彻底解决,但能在这种世界级的数学难题上推进一大步,可以说没多少人能做到。
这也打破了之前全世界公认华人不擅长数学的认知,体现了华国人能搞数学,而且还能搞的相当优秀。
1秒:m.bxwx.tv